El origen exacto del término sección áurea es bastante incierto.
Generalmente se sitúa en Alemania, en la primera mitad del S. XIX. Muchos han sido los artistas, humanistas y matemáticos que lo han tratado, aunque bajo distinto sobrenombre y con distinta disposición. Otros nombres que recibe son sección divina, sección de oro, proporción divina, proporción dorada, canon áureo, regla de oro o número de oro.

Sección áurea es simplemente una proporción concreta. Esta proporción ha desempeñado un importante papel en los intentos de encontrar una explicación matemática a la belleza, de reducir ésta a un número, de encontrar “ la cifra ideal “.

fibonacci-pyramid.jpgDe esta proporción se hablaba ya desde muy antiguo, los egipcios la descubrieron buscando medidas que les permitieran dividir la tierra de forma exacta. De Egipto pasó a Grecia y de allí a Roma. Después esta regla divina cayó en el olvido hasta el S.XIX. En este
periodo vuelve a ser puesta de relieve como principio morfológico por el alemán Zeysing, quien en 1855 afirma en su Aestetische Forschungen: “Para que un todo, dividido en partes desiguales, parezca hermoso, desde el punto de vista de la forma, debe haber entre la parte menor y la mayor, la misma razón que entre la mayor y el todo”.

Las matemáticas y la música se unen en el concepto pitagórico de “armonía”, que significa proporción de las partes de un todo. Los pitagóricos se guiaron siempre en sus investigaciones por el principio de que la música debía ser reconducida hasta las proporciones más simples, ya que debía reflejar en todo la armonía universal.

spirale.jpgSegún la leyenda, Pitágoras descubrió la armonía al escuchar el sonido de martillos provenientes de diferentes yunques en el taller de un herrero. El peso de estos martillos se correspondía con los números 12, 9, 8, 6; el peso del cuarto martillo daría el tono, y el del primer martillo, que era el doble del menor, daba la octava. El peso de los otros dos, que son las media aritmética y armónica de los dos anteriores darían la quinta y la cuarta. Llevadas estas proporciones a un monocordio vemos que el tono o nota base lo da el sonido de la cuerda entera, es lo que se llamaba unísono, si la cuerda tiene la mitad de la longitud original suena una octava más alta que la anterior, la proporción 1/2, que produce el mismo sonido que la cuerda entera solo que más agudo se llama octava (DO-DO) porque se llega a él a través de ocho intervalos de la escala, ocho notas, ocho teclas blancas del teclado; a esta proporción llamaban los griegos diapasón.

La+razón+áurea+en+música.jpg

Los pitagóricos atribuían a las distancias entre los astros, relaciones análogas a las de las longitudes de las cuerdas vibrantes que dan las notas características de los modos musicales; es lo que ellos denominaban la armonía de las esferas. Platón retomó las ideas de que la materia y el mundo están organizados según estructuras matemáticas producidas explícitamente como análogas a estructuras musicales.

piano aureo.png

Si nos fijamos en el teclado de un piano, reconoceremos sus proporciones armoniosas y áureas: hay 8 teclas blancas, 5 teclas negras y ellas aparecen en grupos de 2 y de 3. La serie 2/3/5/8 es, por supuesto, el comienzo de la serie de Fibonacci, y las proporciones de todos esos números gravitan hacia la proporción irracional y perfectamente recíproca de 0.618 de la sección áurea.

One thought on “Música Áurea

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s